Stainless Steel VS. PVC/CPVC | Topic | UL 1738 Stainless Steel | PVC/CPVC | |--------------------------------------|--|--| | Performance and Safety | Large overall Factor of Safety No thermal expansion issues Not susceptible to environmental stress cracking Long history of proven reliable performance Superior strength, no loss of structural integrity Designed for positive pressure | Minimal overall Factor of Safety No provision for thermal expansion (2-3 times greater expansion rate than stainless steel) Susceptible to environmental stress cracking (aging and embrittlement process results in leakage potential) Cracking and/or failure of solvent welds may cause leakage Possible degradation from UV light exposure Toxic odors if severely overheated | | Temperature Limitations and Concerns | Maximum normal use temperature of 600°F but can
withstand much higher temperatures | Flue gas temperatures may cause PVC & CPVC to reach their "Heat Deflection Temperature" (HDT) limits: approximately 149°F (PVC) and194°F (CPVC) Plastics begin to soften/lose strength when HDT is exceeded. Some boilers/water heaters barely qualify to use PVC/CPVC, yet are known to produce higher flue temperatures as they age, resulting in HDT's being exceeded & possible product failure, including stress cracking. | | Available Technical
Support | Extensive technical support available from the manufacturer | Little or no technical support available (for use as a vent system) | | Installation | Fast, safe and easy product installation Complete instructions provided Laser welded seams and factory installed gaskets | Field preparation required (cutting, cleaning, priming, solvent welds and curing) PVC/CPVC manufacturers do not provide installation instructions for flue gas venting applications | | Codes /Test/Standards | UL 1738 tested, listed and labeled for the application Meets all code requirements (including fire codes) | Not listed to UL 1738 for gas appliance venting Performance concerns with through penetrations (firestop locations) Defined as a combustible and has no flame/smoke rating Must be fire wrapped within a plenum space (adds material/labor costs) | | Application Versatility | Wide range of applications Long term proven performance with Cat II, III, & IV appliances | Limited applications due to temperature limitations No double wall option Not designed or endorsed by PVC/CPVC pipe manufacturers for venting flue gases | | "Green" Contributions | Recycleable and made from recycled steel | Possibility of chloride leaching and long term leakage PVC, when utilized in inappropriate applications, can be very damaging to the environment and human health | | Warranty | Factory Warranty | No Warranty | heatfab_®